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Abstract
Reversible logic plays a fundamental role both in ultra-low power electronics
and in quantum computing. It is therefore important to know which reversible
logic gates can be used as building block for the reversible implementation of
an arbitrary boolean function and which cannot.

PACS numbers: 02.10.Ab, 02.20.−a, 03.67.Lx, 84.30.Bv

1. Introduction

Reversible logic plays a fundamental role both in lossless computing [1–8] and in quantum
computing [9–13]. Reversible logic circuits exclusively make use of reversible logic gates.
Such gates have an equal number of binary inputs and binary outputs. This number is called
the width w of the gate. Table 1 gives two examples of the truth table of a reversible gate of
width 3. We see that the 2w = 8 output rows are a permutation of the 2w input rows. This fact
guarantees that it is possible to calculate backwards. Hence the gate is reversible.

Let r(w) denote the number of different reversible gates of width w:

r(w) = (2w)!.

Some of them are universal. We use here the following definition of universality:

Definition 1. A gate is universal if and only if any boolean function f (X1, X2, . . . , Xn) can
be synthesized by a loop-free combinatorial network built from a finite number of such gates,
using each signal X1, X2, . . . , Xn at most once as input signal and using an arbitrary finite
number of times the constant input signals 0 and 1.

The definition tacitly assumes that a single variable of the circuit can address several gates.
In other words, fan-out is allowed. In reversible circuits, however, fan-outs are not allowed.
Therefore we need the notion of r-universality, as introduced by Kerntopf [14] in his so-called
definition 7:
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Figure 1. Synthesis of a boolean function by an r-universal reversible gate.

Table 1. Truth tables of two specific reversible gates g1 and g2.

(a) Reversible gate g1 (b) Reversible gate g2

A1 A2 A3 P1 P2 P3 A1 A2 A3 P1 P2 P3

0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 1 0
0 1 0 0 1 0 0 1 0 0 0 1
0 1 1 1 0 0 0 1 1 0 1 1
1 0 0 0 1 1 1 0 0 1 0 0
1 0 1 1 0 1 1 0 1 1 1 0
1 1 0 1 1 0 1 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1

Definition 2. A reversible gate is r-universal if and only if any boolean function
f (X1, X2, . . . , Xn) can be synthesized by a loop-free and fan-out-free combinatorial network
built from a finite number of such gates, using each signal X1, X2, . . . , Xn at most
once as input signal and using an arbitrary finite number of times the constant input
signals 0 and 1.

An example of an r-universal gate is the gate g1 of table 1(a). Figure 1 shows, e.g., the
implementation of the function f (X1, X2, X3) = X1X3 +X1X3 +X2 (where X is a short-hand
notation for NOTX) by means of two such gates, using each one of the boolean variables X1, X2

and X3 once as input and using the boolean constant 0 as an additional fourth input. Note that
not all reversible gates are r-universal. For example, the same function f (X1, X2, X3) cannot
be realized with the help of gate g2, whose truth table is given in table 1(b). The reason why
table 1(a) is r-universal and table 1(b) is not will become clear in section 4.

Let u(w) be the number of r-universal reversible gates of width w. Storme et al [15]
mention that

r(3) − u(3) = 1344

whereas, according to Kerntopf [14], we have

r(4) − u(4) � 552 960.

Because of r(3) = 8! and r(4) = 16!, the two results can be rewritten as

u(3) = 38 976

20 922 789 335 040 � u(4) < 20 922 789 888 000.

The purpose of the present paper is twofold:

• to give a precise value for u(4) and
• to give an analytical expression for u(w), for arbitrary w.
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2. Definitions

We remind the reader that any boolean function can be written as a Reed–Muller expansion,
i.e. as a XOR of piterms:

f (A1, A2, . . . , Aw)

=
︷︸︸︷

1 ⊕
︷︸︸︷
A1 ⊕

︷︸︸︷
A2 ⊕ · · · ⊕

︷︸︸︷
Aw ⊕

︷ ︸︸ ︷
A1A2 ⊕

︷ ︸︸ ︷
A1A3 ⊕ · · ·

⊕
︷ ︸︸ ︷
Aw−1Aw ⊕

︷ ︸︸ ︷
A1A2A3 ⊕ · · · ⊕

︷ ︸︸ ︷
A1A2 . . . Aw

where ⊕ denotes the XOR operation. The overbrace has the following meaning: for any

piterm X, the notation
︷︸︸︷
X denotes either X or 0. In other words

︷︸︸︷
X means the

piterm X is either present or not. As an example, the function f (X1, X2, X3), written
as an OR of ANDs (i.e. X1X3 + X1X3 + X2) in the previous section, can be written as
f (X1, X2, X3) = X1 ⊕ X2 ⊕ X3 ⊕ X1X2 ⊕ X2X3.

Definition 3. A function f (A1, A2, . . . , An) is selective if and only if it equals either some Aj

or some Aj :

f (A1, A2, . . . , An) =
︷︸︸︷

1 ⊕ Aj

where j obeys 1 � j � n.

There exist, of course, 2n different selective functions of n arguments.

Definition 4. A function f (A1, A2, . . . , An) is linear if and only if its Reed–Muller expansion
contains no terms with two or more letters:

f (A1, A2, . . . , An) =
︷︸︸︷

1 ⊕
︷︸︸︷
A1 ⊕

︷︸︸︷
A2 ⊕ · · · ⊕

︷︸︸︷
An . (1)

The reader will easily verify that there exist 2n+1 different linear functions of n arguments.

Definition 5. A function f (A1, A2, . . . , An) is monotonic (or monotone) if and only if
its value increases along each climbing path from (A1, A2, . . . , An) = (0, 0, . . . , 0) to
(A1, A2, . . . , An) = (1, 1, . . . , 1): f (A′

1, A
′
2, . . . , A

′
n) � f (A′′

1, A
′′
2, . . . , A

′′
n) as soon as

A′
i � A′′

i for all i satisfying 1 � i � n.

See also the first part of the appendix. There exists no closed formula for the number of
monotonic functions. The subject is a research field in itself [16–18].

With the above three classes of functions, we now construct four classes of reversible
gates:

Definition 6. A reversible gate of width w is an exchanger if and only if each of its w functions
Pi(A1, A2, . . . , Aw) equals some Aj , where j obeys 1 � j � w.

The exchangers form a well-known subgroup [15, 19] of the group of reversible gates.

Definition 7. A reversible gate of width w is selective if and only if each of its w functions
Pi(A1, A2, . . . , Aw) is selective.

Table 2(a) gives an example: the gate with functions P1 = A1, P2 = A3 and P3 = A2.
The selective gates form a subgroup [15, 19] of the group of reversible gates, as well as a
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Table 2. Truth tables of three special reversible gates: a selective reversible gate, a linear reversible
gate and a monotonic reversible gate.

(a) Selective reversible gate (b) Linear reversible gate (c) Monotonic reversible gate

A1A2A3 P1P2P3 A1A2A3 P1P2P3 A1A2A3 P1P2P3

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0
0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1
0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 1 0 1
1 0 0 1 1 0 1 0 0 1 1 1 1 0 0 0 1 0
1 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 0
1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1
1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1

supergroup of the group of exchangers. They can be built by cascading inverters (or NOT
gates) and exchangers. They correspond precisely to the gates described by Kerntopf [14] as
‘np-equivalent to the identity gate’.

Definition 8. A reversible gate of width w is linear if and only if each of its w functions
Pi(A1, A2, . . . , Aw) is linear.

Table 2(b) gives an example: the gate with functions P1 = A1, P2 = 1⊕A3 and P3 = A1⊕A2.
Because each linear function of linear functions is itself a linear function, each cascade of
linear reversible gates is itself a linear reversible gate. Therefore, the linear reversible gates
form a subgroup of the group of reversible gates.

Definition 9. A reversible gate of width w is monotonic if and only if each of its w functions
Pi(A1, A2, . . . , Aw) is monotonic.

Table 2(c) gives an example. Because each monotonic function of monotonic functions is
itself a monotonic function, the monotonic reversible gates form a subgroup of the group of
reversible gates.

We can now mention Kerntopf’s three theorems [14]. The first one basically recalls a
theorem published both by Glushkov [20] (and called theorem 5 in chapter II of Glushkov’s
book) and by Mukhopadhyay [21] (and called theorem 3.3 in Mukhopadhyay’s paper). It is
related to conventional (i.e. not necessarily reversible) logic circuits:

Kerntopf’s theorem 1. A logic gate is universal if and only if it is neither linear nor monotonic.

The interdiction of fan-outs in reversible circuits can be circumvented by using a reversible
gate with the so-called duplicating property and applying at least one constant input to that
gate. Figure 2 illustrates the duplication property of gate g1 of table 1(a). In a conventional
combinatorial circuit, the fan-out of figure 2(a) is allowed. In a reversible circuit, it has to be
replaced by a reversible gate, such as in figure 2(b), where we apply two constant inputs to
gate g1.
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Figure 2. Duplicating a boolean variable X: (a) by conventional fan-out and (b) by a reversible
gate.

Kerntopf proves the following theorem on reversible logic gates:

Kerntopf’s theorem 2. A reversible logic gate has duplicating property if and only if it is not
selective.

Combining his first two theorems, he finally comes to the following theorem on reversible
logic circuits:

Kerntopf’s theorem 3. A reversible logic gate is r-universal if and only if it is neither selective
nor linear nor monotonic.

As r-universality is a stronger property than universality, it is no surprise that the third theorem
gives more conditions than the first one.

3. Calculations

In this section, we evaluate the number of different selective reversible gates, the number of
different linear reversible gates and the number of different monotonic reversible gates.

The number l(w) of linear reversible gates of width w can be counted as follows:

• For the first linear function, i.e. P1(A1, A2, . . . , Aw), all linear functions are eligible, with
two exceptions: the constant function 0 and the constant function 1. Therefore we count

2w+1 − 2 = 2(2w − 1).

• For the second linear function, i.e. P2(A1, A2, . . . , Aw), all linear functions are eligible,
except the functions 0, 1, P1 and P1. Therefore we count

2w+1 − 4 = 22(2w−1 − 1).

• For the third linear function, i.e. P3(A1, A2, . . . , Aw), all linear functions are eligible,
except the functions 0, 1, P1, P1, P2, P2, P1 ⊕ P2 and P1 ⊕ P2. Therefore we count

2w+1 − 8 = 23(2w−2 − 1).

• And finally for the ith linear function, i.e. Pi(A1, A2, . . . , Aw), we count

2w+1 − 2
(
1 + C1

i−1 + C2
i−1 + · · · + Ci−1

i−1

) = 2w+1 − 2(1 + 1)i−1 = 2i (2w−i+1 − 1)

eligible functions.

Thus the total amount of allowed combinations is

l(w) = 2(2w − 1) × 22(2w−1 − 1) × 23(2w−2 − 1) × · · · × 2w(2 − 1)

= 21+2+3+···+w(2 − 1)(22 − 1)(23 − 1) · · · (2w − 1)

= 2(w+1)w/2
w∏

i=1

(2i − 1).
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Table 3. The number of different reversible gates, the number of different linear reversible gates,
the number of different selective reversible gates, the number of different monotonic reversible
gates and the number of different conservative reversible gates, as a function of the gate width w.

r(w) s(w) m(w)

w = 2w! l(w) = 2ww! = w! c(w)

1 2 2 2 1 1
2 24 24 8 2 2
3 40 320 1 344 48 6 36
4 20 922 789 888 000 322 560 384 24 414 720

This result is in accordance with the formulae published by Shende et al [22, 23]: it is the
product of

∏w
i=1(2

w − 2i−1), the number of ‘C-constructible gates’ (i.e. the number of gates
generated by wiring CONTROLLED NOTs), and 2w, the number of ‘N-constructible gates’ (i.e.
the number of gates generated by wiring NOTs). The number

∏w
i=1(2

w − 2i−1) also appears
in projective geometry, as the order |GL(w, 2)| of the general linear group [24] of bijective
linear transformations of the w-dimensional vector space over the Galois field GF(2). It is the
number of linear w × w matrices with matrix elements 0 and 1 and with unitary determinant.
The additional factor 2w accounts for the number of translations in affine geometry. It
is the number of w × 1 vectors with vector components 0 and 1. The product 2w|GL(w, 2)|
is the order of the affine linear group AGL(w, 2). Table 3 gives numerical values of l(w), for
the cases 1 � w � 4.

The number s(w) of selective reversible gates of width w is well known and amounts to
2ww!. We note that all these selective reversible gates are linear and thus are included in l(w).

The number m(w) of monotonic reversible gates of width w is counted in the appendix.
It turns out that the only monotonic reversible gates which exist are the w! exchangers, and
therefore are linear. Thus all monotonic reversible gates are also included in the set of linear
reversible gates.

4. Conclusion

Kerntopf’s theorem 3 together with the calculation in the previous section leads to a new
theorem:

Theorem. A reversible gate is r-universal if and only if it is not linear.

The reader will easily verify that linear gates are not universal, for the simple reason that
any circuit built from linear gates can only synthesize linear functions, thus explaining the
‘only-if’. The ‘if’ part of the theorem is less self-evident: it needs

• Kerntopf’s theorem 3,
• the fact that each selective reversible gate is linear and
• the proof in the appendix that each monotonic reversible logic gate is an exchanger and

hence is linear.

As two examples, we recall the gates g1 and g2 of table 1. Gate g1 is r-universal, as
it is not linear. To demonstrate its nonlinearity, it suffices to remark that the function
P1(A1, A2, A3) = A1A2 ⊕ A2A3 ⊕ A3A1 is nonlinear. In contrast, gate g2 is linear, as
all three functions P1(A1, A2, A3), P2(A1, A2, A3) and P3(A1, A2, A3) are linear. Indeed, we
have P1 = A1, P2 = A3 and P3 = A2.
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Table 4. The number of different reversible gates and the number of different r-universal reversible
gates, as a function of the gate width w.

w r(w) u(w)
u(w)
r(w)

(in %)

1 2 0 0
2 24 0 0
3 40 320 38 976 96.7
4 20 922 789 888 000 20 922 789 565 440 99.999 998 5

From the above theorem, together with the calculations in the previous section, the
following theorem is obtained:

Theorem. The number of r-universal reversible gates is given by

u(w) = r(w) − l(w) = (2w)! − 2(w+1)w/2
w∏

i=1

(2i − 1).

Table 4 gives the values of u(w) for 1 � w � 4. It is clear that the fraction u(w)/r(w)

increases rapidly from 0 to unity, for w increasing from 2 to infinity. Thus, in accordance with
Kerntopf [14], we can conclude that (for w � 4) ‘almost all’ reversible gates are r-universal.

Appendix. Monotonic reversible gates

We consider a logic gate with w binary inputs Ai and w binary outputs Pi . We use the different
values of the input (A1, A2, . . . , Aw) as the coordinates of a hypercube. We can represent a
truth table by giving each corner of the hypercube a label (P1, P2, . . . , Pw). If the truth table
is reversible, all 2w labels are different.

We call a climbing path, a path that travels from point (0, 0, . . . , 0) to point (1, 1, . . . , 1)

by consecutive steps that each increases a single coordinate Ai from 0 to 1. Such path
necessarily contains w steps, each one an edge of the hypercube. As

• for the first step there are w possible choices,
• for the second step there are w − 1 possible choices,
• and for the j th step there are w − j + 1 possible choices,

there are w! different climbing paths.
If the truth table is reversible, then, at each step of a climbing path, at least one of the

numbers P1, P2, . . . , Pw must change. Such change can only be from 0 to 1, if the functions
P1(A1, A2, . . . , Aw), P2(A1, A2, . . . , Aw), etc are all monotonic. Because there are only w

steps, this means that at each step exactly one of the numbers P1, P2, . . . , Pw must increase
from 0 to 1. Now, we call the ‘weight’ of a vector (X1, X2, . . . , Xw) the number of ones
in the vector. Note that all corners (A1, A2, . . . , Aw) with the same weight p lie in a same
hyperplane A1 + A2 + · · · + Aw = p, perpendicular to the vector (1, 1, . . . , 1). The above
reasoning demonstrates that, along a climbing path of a monotonic reversible gate, not only
the weight of (A1, A2, . . . , Aw) increases in unitary steps from 0 to w, but also the weight of
(P1, P2, . . . , Pw). We can conclude that in each corner, the weight of (P1, P2, . . . , Pw) equals
the weight of (A1, A2, . . . , Aw). In other words, monotonic reversible gates conserve weight.
Thus all monotonic reversible gates are conservative reversible gates. The opposite, however,
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Figure 3. Four-dimensional hypercube with labels representing a monotonic reversible gate of
width 4.

is not true. Conservative gates have been studied by Saso and Kinoshita [25]; conservative
reversible gates have been studied by Fredkin and Toffoli [26] and by Cattaneo et al [27].
There exist c(w) = C0

w!C1
w!C2

w! . . . Cw
w ! different conservative reversible gates. Table 3 gives

the explicit values for w up to 4. The majority is not monotonic.
We first remark that each corner of the hypercube (with weight p) is connected by edges

to its w neighbours, of which p have weight p − 1 and w − p have weight p + 1. We now
construct a monotonic reversible gate, by applying labels (P1, P2, . . . , Pw) in hyperplanes of
ever increasing weight:

• For p = 0, there is no freedom: we have to attach the label (P1, P2, . . . , Pw) =
(0, 0, . . . , 0) to the corner (A1, A2, . . . , Aw) = (0, 0, . . . , 0).

• For p = 1, we can distribute the w labels (1, 0, 0, . . . , 0), (0, 1, 0, 0, . . . , 0), . . . ,

(0, 0, . . . , 0, 1) freely among the w corners. This yields w! possibilities.
• For p = 2, there is again no freedom: as each corner of weight 2 is connected (by

means of two edges) to two corners of weight 1, its label is determined by the two labels
downstream.

• For arbitrary p (with 2 � p � w), there is again no freedom: as each corner of weight p
is connected (by means of p! different paths) to p different corners of weight 1, its label
of weight p is completely determined by the p labels of weight 1.

See example in figure 3, with w = 4. We conclude that there are only w! different monotonic
reversible gates.

Now we remark that all exchangers are monotonic and that the number of different
exchangers equals w!. As the number of exchangers equals the number of monotonic reversible
gates, and as all exchangers are monotonic, this leads unavoidably to the conclusion that the
only monotonic reversible gates that exist are the exchangers. Table 2(c) gives an example:
this monotonic reversible gate indeed is an exchanger: P1 = A3, P2 = A1 and P3 = A2.

Figure 4 shows a Venn diagram of the set R of reversible gates with the important subsets:
the set L of linear reversible gates, the set S of selective reversible gates, the set M of monotonic
reversible gates (i.e. the set of exchangers) and finally the set C of conservative reversible
gates. We distinguish two chains of subgroups:

M ⊂ S ⊂ L ⊂ R and M ⊂ C ⊂ R.
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M S L

R

Figure 4. Venn diagram of the set of reversible gates, with its major subsets.

We finally remark the property

L ∩ C = M.

The latter property can be proved as follows. Conservation of zero weight at

(A1, A2, . . . , Aw) = (0, 0, . . . , 0) implies that
︷︸︸︷

1 in formula (1) equals 0 for all w functions
Pi . Permutation of (1, 0, 0, . . . , 0), (0, 1, 0, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1) in the hyperplane
p = 1 implies that among the resulting w values Pi there is one and only one 1. But the
number of 1s in that hyperplane also equals the number of terms in the linear Reed–Muller
expansion of the function Pi . Hence, the expansion contains only one term. Thus Pi equals
some Aj . This fact applies to all i and therefore the gate is an exchanger.
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