r-Universal reversible logic gates

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2004 J. Phys. A: Math. Gen. 375815
(http://iopscience.iop.org/0305-4470/37/22/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.90
The article was downloaded on 02/06/2010 at 18:04

Please note that terms and conditions apply.

r-Universal reversible logic gates

A De Vos ${ }^{1}$ and L Storme ${ }^{2}$
${ }^{1}$ Imec v.z.w., Vakgroep Elektronika and Informatiesystemen, Universiteit Gent, Sint Pietersnieuwstraat 41, B-9000 Gent, Belgium
${ }^{2}$ Vakgroep Zuivere Wiskunde and Computeralgebra, Universiteit Gent, Krijgslaan 281, B-9000 Gent, Belgium

Received 19 December 2003
Published 18 May 2004
Online at stacks.iop.org/JPhysA/37/5815
DOI: 10.1088/0305-4470/37/22/008

Abstract

Reversible logic plays a fundamental role both in ultra-low power electronics and in quantum computing. It is therefore important to know which reversible logic gates can be used as building block for the reversible implementation of an arbitrary boolean function and which cannot.

PACS numbers: 02.10.Ab, 02.20.-a, 03.67.Lx, 84.30.Bv

1. Introduction

Reversible logic plays a fundamental role both in lossless computing [1-8] and in quantum computing [9-13]. Reversible logic circuits exclusively make use of reversible logic gates. Such gates have an equal number of binary inputs and binary outputs. This number is called the width w of the gate. Table 1 gives two examples of the truth table of a reversible gate of width 3 . We see that the $2^{w}=8$ output rows are a permutation of the 2^{w} input rows. This fact guarantees that it is possible to calculate backwards. Hence the gate is reversible.

Let $r(w)$ denote the number of different reversible gates of width w :

$$
r(w)=\left(2^{w}\right)!.
$$

Some of them are universal. We use here the following definition of universality:
Definition 1. A gate is universal if and only if any boolean function $f\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ can be synthesized by a loop-free combinatorial network built from a finite number of such gates, using each signal $X_{1}, X_{2}, \ldots, X_{n}$ at most once as input signal and using an arbitrary finite number of times the constant input signals 0 and 1 .

The definition tacitly assumes that a single variable of the circuit can address several gates. In other words, fan-out is allowed. In reversible circuits, however, fan-outs are not allowed. Therefore we need the notion of r-universality, as introduced by Kerntopf [14] in his so-called definition 7 :

Figure 1. Synthesis of a boolean function by an r-universal reversible gate.

Table 1. Truth tables of two specific reversible gates g_{1} and g_{2}.

(a) Reversible gate g_{1}		(b) Reversible gate g_{2}	
$A_{1} A_{2} A_{3}$	$P_{1} P_{2} P_{3}$		$A_{1} A_{2} A_{3}$

Definition 2. A reversible gate is r-universal if and only if any boolean function $f\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ can be synthesized by a loop-free and fan-out-free combinatorial network built from a finite number of such gates, using each signal $X_{1}, X_{2}, \ldots, X_{n}$ at most once as input signal and using an arbitrary finite number of times the constant input signals 0 and 1 .

An example of an r-universal gate is the gate g_{1} of table $1(a)$. Figure 1 shows, e.g., the implementation of the function $f\left(X_{1}, X_{2}, X_{3}\right)=X_{1} \overline{X_{3}}+\overline{X_{1}} X_{3}+X_{2}$ (where \bar{X} is a short-hand notation for NOT X) by means of two such gates, using each one of the boolean variables X_{1}, X_{2} and X_{3} once as input and using the boolean constant 0 as an additional fourth input. Note that not all reversible gates are r-universal. For example, the same function $f\left(X_{1}, X_{2}, X_{3}\right)$ cannot be realized with the help of gate g_{2}, whose truth table is given in table $1(b)$. The reason why table $1(a)$ is r -universal and table $1(b)$ is not will become clear in section 4.

Let $u(w)$ be the number of r-universal reversible gates of width w. Storme et al [15] mention that

$$
r(3)-u(3)=1344
$$

whereas, according to Kerntopf [14], we have

$$
r(4)-u(4) \leqslant 552960 .
$$

Because of $r(3)=8$! and $r(4)=16$!, the two results can be rewritten as

$$
\begin{aligned}
& u(3)=38976 \\
& 20922789335040 \leqslant u(4)<20922789888000 .
\end{aligned}
$$

The purpose of the present paper is twofold:

- to give a precise value for $u(4)$ and
- to give an analytical expression for $u(w)$, for arbitrary w.

2. Definitions

We remind the reader that any boolean function can be written as a Reed-Muller expansion, i.e. as a XOR of piterms:

$$
\begin{aligned}
& f\left(A_{1}, A_{2}, \ldots, A_{w}\right) \\
&=\overbrace{1}^{\oplus} \overbrace{A_{1}} \oplus \overbrace{A_{2}}^{\nu} \oplus \cdots \oplus \overbrace{A_{w}}^{\sim} \oplus \overbrace{A_{1} A_{2}} \oplus \overbrace{A_{1} A_{3}}^{\sim} \oplus \cdots \\
& \oplus \overbrace{A_{w-1}} \oplus \overbrace{A_{1} A_{2} A_{3}} \oplus \cdots \oplus \overbrace{A_{1} A_{2} \ldots A_{w}}
\end{aligned}
$$

where \oplus denotes the XOR operation. The overbrace has the following meaning: for any piterm X, the notation \overbrace{X} denotes either X or 0 . In other words \overbrace{X} means the piterm X is either present or not. As an example, the function $f\left(X_{1}, X_{2}, X_{3}\right)$, written as an OR of ANDs (i.e. $X_{1} \overline{X_{3}}+\overline{X_{1}} X_{3}+X_{2}$) in the previous section, can be written as $f\left(X_{1}, X_{2}, X_{3}\right)=X_{1} \oplus X_{2} \oplus X_{3} \oplus X_{1} X_{2} \oplus X_{2} X_{3}$.

Definition 3. A function $f\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is selective if and only if it equals either some A_{j} or some $\overline{A_{j}}$:

$$
f\left(A_{1}, A_{2}, \ldots, A_{n}\right)=\overbrace{1} \oplus A_{j}
$$

where j obeys $1 \leqslant j \leqslant n$.
There exist, of course, $2 n$ different selective functions of n arguments.
Definition 4. A function $f\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is linear if and only if its Reed-Muller expansion contains no terms with two or more letters:

$$
\begin{equation*}
f\left(A_{1}, A_{2}, \ldots, A_{n}\right)=\overbrace{1} \oplus \overbrace{A_{1}} \oplus \overbrace{A_{2}} \oplus \cdots \oplus \overbrace{A_{n}} . \tag{1}
\end{equation*}
$$

The reader will easily verify that there exist 2^{n+1} different linear functions of n arguments.
Definition 5. A function $f\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is monotonic (or monotone) if and only if its value increases along each climbing path from $\left(A_{1}, A_{2}, \ldots, A_{n}\right)=(0,0, \ldots, 0)$ to $\left(A_{1}, A_{2}, \ldots, A_{n}\right)=(1,1, \ldots, 1): f\left(A_{1}^{\prime}, A_{2}^{\prime}, \ldots, A_{n}^{\prime}\right) \geqslant f\left(A_{1}^{\prime \prime}, A_{2}^{\prime \prime}, \ldots, A_{n}^{\prime \prime}\right)$ as soon as $A_{i}^{\prime} \geqslant A_{i}^{\prime \prime}$ for all i satisfying $1 \leqslant i \leqslant n$.

See also the first part of the appendix. There exists no closed formula for the number of monotonic functions. The subject is a research field in itself [16-18].

With the above three classes of functions, we now construct four classes of reversible gates:

Definition 6. A reversible gate of width w is an exchanger if and only if each of its w functions $P_{i}\left(A_{1}, A_{2}, \ldots, A_{w}\right)$ equals some A_{j}, where j obeys $1 \leqslant j \leqslant w$.

The exchangers form a well-known subgroup $[15,19]$ of the group of reversible gates.
Definition 7. A reversible gate of width w is selective if and only if each of its w functions $P_{i}\left(A_{1}, A_{2}, \ldots, A_{w}\right)$ is selective.

Table 2(a) gives an example: the gate with functions $P_{1}=A_{1}, P_{2}=\overline{A_{3}}$ and $P_{3}=A_{2}$. The selective gates form a subgroup $[15,19]$ of the group of reversible gates, as well as a

Table 2. Truth tables of three special reversible gates: a selective reversible gate, a linear reversible gate and a monotonic reversible gate.

(a) Selective reversible gate		(b) Linear reversible gate		(c) Monotonic reversible gate	
$A_{1} A_{2} A_{3}$	$P_{1} P_{2} P_{3}$	$A_{1} A_{2} A_{3}$	$P_{1} P_{2} P_{3}$	$A_{1} A_{2} A_{3}$	$P_{1} P_{2} P_{3}$
000	010	000	010	000	000
001	000	001	000	001	100
010	011	010	011	010	001
011	001	011	001	011	101
100	110	100	111	100	010
101	100	101	101	101	110
110	111	110	110	110	011
111	101	111	100	111	111

supergroup of the group of exchangers. They can be built by cascading inverters (or NOT gates) and exchangers. They correspond precisely to the gates described by Kerntopf [14] as 'np-equivalent to the identity gate'.

Definition 8. A reversible gate of width w is linear if and only if each of its w functions $P_{i}\left(A_{1}, A_{2}, \ldots, A_{w}\right)$ is linear.

Table 2(b) gives an example: the gate with functions $P_{1}=A_{1}, P_{2}=1 \oplus A_{3}$ and $P_{3}=A_{1} \oplus A_{2}$. Because each linear function of linear functions is itself a linear function, each cascade of linear reversible gates is itself a linear reversible gate. Therefore, the linear reversible gates form a subgroup of the group of reversible gates.

Definition 9. A reversible gate of width w is monotonic if and only if each of its w functions $P_{i}\left(A_{1}, A_{2}, \ldots, A_{w}\right)$ is monotonic.

Table 2(c) gives an example. Because each monotonic function of monotonic functions is itself a monotonic function, the monotonic reversible gates form a subgroup of the group of reversible gates.

We can now mention Kerntopf's three theorems [14]. The first one basically recalls a theorem published both by Glushkov [20] (and called theorem 5 in chapter II of Glushkov's book) and by Mukhopadhyay [21] (and called theorem 3.3 in Mukhopadhyay's paper). It is related to conventional (i.e. not necessarily reversible) logic circuits:

Kerntopf's theorem 1. A logic gate is universal if and only if it is neither linear nor monotonic.
The interdiction of fan-outs in reversible circuits can be circumvented by using a reversible gate with the so-called duplicating property and applying at least one constant input to that gate. Figure 2 illustrates the duplication property of gate g_{1} of table $1(a)$. In a conventional combinatorial circuit, the fan-out of figure $2(a)$ is allowed. In a reversible circuit, it has to be replaced by a reversible gate, such as in figure $2(b)$, where we apply two constant inputs to gate g_{1}.

(a)

(b)

Figure 2. Duplicating a boolean variable X : (a) by conventional fan-out and (b) by a reversible gate

Kerntopf proves the following theorem on reversible logic gates:
Kerntopf's theorem 2. A reversible logic gate has duplicating property if and only if it is not selective.

Combining his first two theorems, he finally comes to the following theorem on reversible logic circuits:

Kerntopf's theorem 3. A reversible logic gate is r-universal if and only if it is neither selective nor linear nor monotonic.

As r-universality is a stronger property than universality, it is no surprise that the third theorem gives more conditions than the first one.

3. Calculations

In this section, we evaluate the number of different selective reversible gates, the number of different linear reversible gates and the number of different monotonic reversible gates.

The number $l(w)$ of linear reversible gates of width w can be counted as follows:

- For the first linear function, i.e. $P_{1}\left(A_{1}, A_{2}, \ldots, A_{w}\right)$, all linear functions are eligible, with two exceptions: the constant function 0 and the constant function 1 . Therefore we count

$$
2^{w+1}-2=2\left(2^{w}-1\right) .
$$

- For the second linear function, i.e. $P_{2}\left(A_{1}, A_{2}, \ldots, A_{w}\right)$, all linear functions are eligible, except the functions $0,1, P_{1}$ and $\overline{P_{1}}$. Therefore we count

$$
2^{w+1}-4=2^{2}\left(2^{w-1}-1\right)
$$

- For the third linear function, i.e. $P_{3}\left(A_{1}, A_{2}, \ldots, A_{w}\right)$, all linear functions are eligible, except the functions $0,1, P_{1}, \overline{P_{1}}, P_{2}, \overline{P_{2}}, P_{1} \oplus P_{2}$ and $\overline{P_{1} \oplus P_{2}}$. Therefore we count

$$
2^{w+1}-8=2^{3}\left(2^{w-2}-1\right) .
$$

- And finally for the i th linear function, i.e. $P_{i}\left(A_{1}, A_{2}, \ldots, A_{w}\right)$, we count $2^{w+1}-2\left(1+C_{i-1}^{1}+C_{i-1}^{2}+\cdots+C_{i-1}^{i-1}\right)=2^{w+1}-2(1+1)^{i-1}=2^{i}\left(2^{w-i+1}-1\right)$ eligible functions
Thus the total amount of allowed combinations is

$$
\begin{aligned}
l(w) & =2\left(2^{w}-1\right) \times 2^{2}\left(2^{w-1}-1\right) \times 2^{3}\left(2^{w-2}-1\right) \times \cdots \times 2^{w}(2-1) \\
& =2^{1+2+3+\cdots+w}(2-1)\left(2^{2}-1\right)\left(2^{3}-1\right) \cdots\left(2^{w}-1\right) \\
& =2^{(w+1) w / 2} \prod_{i=1}^{w}\left(2^{i}-1\right) .
\end{aligned}
$$

Table 3. The number of different reversible gates, the number of different linear reversible gates, the number of different selective reversible gates, the number of different monotonic reversible gates and the number of different conservative reversible gates, as a function of the gate width w.

	$r(w)$ w $=2^{w}!$	$l(w)$	$s(w)$ $=2^{w} w!$	$m(w)$ $=w!$	$c(w)$
1	2	2	2	1	1
2	24	24	8	2	2
3	40320	1344	48	6	36
4	20922789888000	322560	384	24	414720

This result is in accordance with the formulae published by Shende et al [22,23]: it is the product of $\prod_{i=1}^{w}\left(2^{w}-2^{i-1}\right)$, the number of 'C-constructible gates' (i.e. the number of gates generated by wiring CONTROLLED NOTs), and 2^{w}, the number of ' N -constructible gates' (i.e. the number of gates generated by wiring NOTs). The number $\prod_{i=1}^{w}\left(2^{w}-2^{i-1}\right)$ also appears in projective geometry, as the order $|G L(w, 2)|$ of the general linear group [24] of bijective linear transformations of the w-dimensional vector space over the Galois field $G F(2)$. It is the number of linear $w \times w$ matrices with matrix elements 0 and 1 and with unitary determinant. The additional factor 2^{w} accounts for the number of translations in affine geometry. It is the number of $w \times 1$ vectors with vector components 0 and 1 . The product $2^{w}|G L(w, 2)|$ is the order of the affine linear group $A G L(w, 2)$. Table 3 gives numerical values of $l(w)$, for the cases $1 \leqslant w \leqslant 4$.

The number $s(w)$ of selective reversible gates of width w is well known and amounts to $2^{w} w!$. We note that all these selective reversible gates are linear and thus are included in $l(w)$.

The number $m(w)$ of monotonic reversible gates of width w is counted in the appendix. It turns out that the only monotonic reversible gates which exist are the w ! exchangers, and therefore are linear. Thus all monotonic reversible gates are also included in the set of linear reversible gates.

4. Conclusion

Kerntopf's theorem 3 together with the calculation in the previous section leads to a new theorem:

Theorem. A reversible gate is r-universal if and only if it is not linear.
The reader will easily verify that linear gates are not universal, for the simple reason that any circuit built from linear gates can only synthesize linear functions, thus explaining the 'only-if'. The 'if' part of the theorem is less self-evident: it needs

- Kerntopf's theorem 3,
- the fact that each selective reversible gate is linear and
- the proof in the appendix that each monotonic reversible logic gate is an exchanger and hence is linear.

As two examples, we recall the gates g_{1} and g_{2} of table 1 . Gate g_{1} is r-universal, as it is not linear. To demonstrate its nonlinearity, it suffices to remark that the function $P_{1}\left(A_{1}, A_{2}, A_{3}\right)=A_{1} A_{2} \oplus A_{2} A_{3} \oplus A_{3} A_{1}$ is nonlinear. In contrast, gate g_{2} is linear, as all three functions $P_{1}\left(A_{1}, A_{2}, A_{3}\right), P_{2}\left(A_{1}, A_{2}, A_{3}\right)$ and $P_{3}\left(A_{1}, A_{2}, A_{3}\right)$ are linear. Indeed, we have $P_{1}=A_{1}, P_{2}=A_{3}$ and $P_{3}=A_{2}$.

Table 4. The number of different reversible gates and the number of different r-universal reversible gates, as a function of the gate width w.

w	$r(w)$	$u(w)$	
1	2	$\frac{u(w)}{r(w)}$ (in \%)	
2	24	0	0
3	40320	0	0
4	20922789888000	20922789565440	99.9999985

From the above theorem, together with the calculations in the previous section, the following theorem is obtained:

Theorem. The number of r-universal reversible gates is given by

$$
u(w)=r(w)-l(w)=\left(2^{w}\right)!-2^{(w+1) w / 2} \prod_{i=1}^{w}\left(2^{i}-1\right)
$$

Table 4 gives the values of $u(w)$ for $1 \leqslant w \leqslant 4$. It is clear that the fraction $u(w) / r(w)$ increases rapidly from 0 to unity, for w increasing from 2 to infinity. Thus, in accordance with Kerntopf [14], we can conclude that (for $w \geqslant 4$) 'almost all' reversible gates are r-universal.

Appendix. Monotonic reversible gates

We consider a logic gate with w binary inputs A_{i} and w binary outputs P_{i}. We use the different values of the input $\left(A_{1}, A_{2}, \ldots, A_{w}\right)$ as the coordinates of a hypercube. We can represent a truth table by giving each corner of the hypercube a label ($P_{1}, P_{2}, \ldots, P_{w}$). If the truth table is reversible, all 2^{w} labels are different.

We call a climbing path, a path that travels from point $(0,0, \ldots, 0)$ to point $(1,1, \ldots, 1)$ by consecutive steps that each increases a single coordinate A_{i} from 0 to 1 . Such path necessarily contains w steps, each one an edge of the hypercube. As

- for the first step there are w possible choices,
- for the second step there are $w-1$ possible choices,
- and for the j th step there are $w-j+1$ possible choices,
there are w ! different climbing paths.
If the truth table is reversible, then, at each step of a climbing path, at least one of the numbers $P_{1}, P_{2}, \ldots, P_{w}$ must change. Such change can only be from 0 to 1 , if the functions $P_{1}\left(A_{1}, A_{2}, \ldots, A_{w}\right), P_{2}\left(A_{1}, A_{2}, \ldots, A_{w}\right)$, etc are all monotonic. Because there are only w steps, this means that at each step exactly one of the numbers $P_{1}, P_{2}, \ldots, P_{w}$ must increase from 0 to 1 . Now, we call the 'weight' of a vector ($X_{1}, X_{2}, \ldots, X_{w}$) the number of ones in the vector. Note that all corners $\left(A_{1}, A_{2}, \ldots, A_{w}\right)$ with the same weight p lie in a same hyperplane $A_{1}+A_{2}+\cdots+A_{w}=p$, perpendicular to the vector $(1,1, \ldots, 1)$. The above reasoning demonstrates that, along a climbing path of a monotonic reversible gate, not only the weight of $\left(A_{1}, A_{2}, \ldots, A_{w}\right)$ increases in unitary steps from 0 to w, but also the weight of $\left(P_{1}, P_{2}, \ldots, P_{w}\right)$. We can conclude that in each corner, the weight of $\left(P_{1}, P_{2}, \ldots, P_{w}\right)$ equals the weight of $\left(A_{1}, A_{2}, \ldots, A_{w}\right)$. In other words, monotonic reversible gates conserve weight. Thus all monotonic reversible gates are conservative reversible gates. The opposite, however,

Figure 3. Four-dimensional hypercube with labels representing a monotonic reversible gate of width 4.
is not true. Conservative gates have been studied by Saso and Kinoshita [25]; conservative reversible gates have been studied by Fredkin and Toffoli [26] and by Cattaneo et al [27]. There exist $c(w)=C_{w}^{0}!C_{w}^{1}!C_{w}^{2}!\ldots C_{w}^{w}!$ different conservative reversible gates. Table 3 gives the explicit values for w up to 4 . The majority is not monotonic.

We first remark that each corner of the hypercube (with weight p) is connected by edges to its w neighbours, of which p have weight $p-1$ and $w-p$ have weight $p+1$. We now construct a monotonic reversible gate, by applying labels ($P_{1}, P_{2}, \ldots, P_{w}$) in hyperplanes of ever increasing weight:

- For $p=0$, there is no freedom: we have to attach the label $\left(P_{1}, P_{2}, \ldots, P_{w}\right)=$ $(0,0, \ldots, 0)$ to the corner $\left(A_{1}, A_{2}, \ldots, A_{w}\right)=(0,0, \ldots, 0)$.
- For $p=1$, we can distribute the w labels $(1,0,0, \ldots, 0),(0,1,0,0, \ldots, 0), \ldots$, $(0,0, \ldots, 0,1)$ freely among the w corners. This yields $w!$ possibilities.
- For $p=2$, there is again no freedom: as each corner of weight 2 is connected (by means of two edges) to two corners of weight 1 , its label is determined by the two labels downstream.
- For arbitrary p (with $2 \leqslant p \leqslant w$), there is again no freedom: as each corner of weight p is connected (by means of p ! different paths) to p different corners of weight 1 , its label of weight p is completely determined by the p labels of weight 1 .

See example in figure 3, with $w=4$. We conclude that there are only w ! different monotonic reversible gates.

Now we remark that all exchangers are monotonic and that the number of different exchangers equals $w!$. As the number of exchangers equals the number of monotonic reversible gates, and as all exchangers are monotonic, this leads unavoidably to the conclusion that the only monotonic reversible gates that exist are the exchangers. Table 2(c) gives an example: this monotonic reversible gate indeed is an exchanger: $P_{1}=A_{3}, P_{2}=A_{1}$ and $P_{3}=A_{2}$.

Figure 4 shows a Venn diagram of the set \mathbf{R} of reversible gates with the important subsets: the set \mathbf{L} of linear reversible gates, the set \mathbf{S} of selective reversible gates, the set \mathbf{M} of monotonic reversible gates (i.e. the set of exchangers) and finally the set \mathbf{C} of conservative reversible gates. We distinguish two chains of subgroups:

$$
\mathbf{M} \subset \mathbf{S} \subset \mathbf{L} \subset \mathbf{R} \quad \text { and } \quad \mathbf{M} \subset \mathbf{C} \subset \mathbf{R}
$$

Figure 4. Venn diagram of the set of reversible gates, with its major subsets.

We finally remark the property

$$
\mathbf{L} \cap \mathbf{C}=\mathbf{M}
$$

The latter property can be proved as follows. Conservation of zero weight at $\left(A_{1}, A_{2}, \ldots, A_{w}\right)=(0,0, \ldots, 0)$ implies that $\overbrace{1}$ in formula (1) equals 0 for all w functions P_{i}. Permutation of $(1,0,0, \ldots, 0),(0,1,0,0, \ldots, 0), \ldots,(0,0, \ldots, 0,1)$ in the hyperplane $p=1$ implies that among the resulting w values P_{i} there is one and only one 1 . But the number of 1 s in that hyperplane also equals the number of terms in the linear Reed-Muller expansion of the function P_{i}. Hence, the expansion contains only one term. Thus P_{i} equals some A_{j}. This fact applies to all i and therefore the gate is an exchanger.

References

[1] Landauer R 1961 Irreversibility and heat generation in the computational process IBM J. Res. Dev. 5 183-91
[2] Keyes R and Landauer R 1970 Minimal energy dissipation in logic IBM J. Res. Dev. 14 153-57
[3] Bennett C 1973 Logical reversibility of computation IBM J Res. Dev. 17 525-32
[4] Bennett C and Landauer R 1985 The fundamental physical limits of computation Sci. Am. 253 38-46
[5] De Vos A 1996 Introduction to r-MOS systems Proc. 4th Workshop on Physics and Computation (Boston, Nov. 1996) pp 92-6
[6] De Vos A 1997 Towards reversible digital computers Proc. European Conference on Circuit Theory and Design (Budapest, Sept. 1997) pp 923-31
[7] De Vos A 1999 Reversible computing Prog. Quantum Electron. 23 1-49
[8] De Vos A 2003 Lossless computing Proc. IEEE Workshop on Signal Processing (Poznań, Oct. 2003) pp 7-14
[9] Feynman R 1985 Quantum mechanical computers Opt. News 11 11-20
[10] Feynman R 1996 Feynman Lectures on Computation ed A Hey and R Allen (Reading, MA: Addison-Wesley)
[11] Barenco A, Bennett C, Cleve R, Di Vincenzo D, Margolus N, Shor P, Sleator T, Smolin J and Weinfurter H 1995 Elementary gates for quantum computation Phys. Rev. A 52 3457-67
[12] Beckman D, Chari A, Devabhaktuni S and Preskill J 1996 Efficient networks for quantum factoring Phys. Rev. A 54 1034-63
[13] Bettelli S, Calarco T and Serafini L 2003 Towards an architecture for quantum programming Eur. Phys. J. D 25 181-200
[14] Kerntopf P 2002 On universality of binary reversible logic gates Proc. 5th Workshop on Boolean Problems (Freiberg, Sept. 2002) pp 47-52
[15] Storme L, De Vos A and Jacobs G 1999 Group theoretical aspects of reversible logic gates J. Universal Comput. Sci. 5 307-21
[16] Hansel G 1966 Sur le nombre des fonctions booléennes monotones de n variables Comptes Rendues de l'Académie des Sciences de Paris 262 1088-90
[17] Kleitman D 1969 On Dedekind's problem: the number of monotone boolean functions Proc. Am. Math. Soc. 21 677-82
[18] Fidytek R, Mostowski A, Somla R and Szepietowski A 2001 Algorithms counting monotone Boolean functions Inform. Proc. Lett. 79 203-9
[19] De Vos A, Raa B and Storme L 2002 Generating the group of reversible logic gates J. Phys. A: Math. Gen. 35 7063-78
[20] Glushkov V 1966 Introduction to cybernetics (New York: Academic) pp 39-66
[21] Mukhopadhyay A 1971 Complete sets of logic primitives Recent Developments in Switching Theory ed A Mukhopadhyay (New York: Academic) pp 1-26
[22] Shende V, Prasad A, Markov I and Hayes J 2002 Synthesis of optimal reversible logic circuits Proc. Int. Workshop on Logic and Synthesis (New Orleans, June 2002) pp 125-30
[23] Shende V, Prasad A, Markov I and Hayes J 2003 Synthesis of reversible logic circuits IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22 710-22
[24] Hirschfeld J W P 1998 Projective Geometries Over Finite Fields (Oxford: Oxford University Press) pp 41-2
[25] Sasao T and Kinoshita K 1979 Conservative logic elements and their universality IEEE Trans. Comput. 28 682-85
[26] Fredkin E and Toffoli T 1982 Conservative logic Int. J. Theor. Phys. 21 219-53
[27] Cattaneo G, Leporati A and Leporini R 2002 Fredkin gates for finite-valued reversible and conservative logics J. Phys. A: Math. Gen. 35 9755-85

